Data Driven SVBRDF Estimation Using Deep Embedded Clustering

نویسندگان

چکیده

Photo-realistic representation in user-specified view and lighting conditions is a challenging but high-demand technology the digital transformation of cultural heritages. Despite recent advances neural renderings, it still necessary to capture high-quality surface reflectance from photography controlled environment for real-time applications such as VR/AR arts. In this paper, we present deep embedding clustering network spatially-varying bidirectional distribution function (SVBRDF) estimation. Our designed simultaneously update basis its linear manifold spatial domain SVBRDF. We show that our dual scheme excels optimizing rendering loss terms convergence speed visual quality compared current iterative SVBRDF methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Data-driven Enhancement of SVBRDF Reflectance Data

Analytical SVBRDF representations are widely used to represent spatially varying material appearance depending on view and light configurations. State-of-the-art industry-grade SVBRDF acquisition devices allow the acquisition within several minutes. For many materials with a surface reflectance behavior exhibiting complex effects of light exchange such as inter-reflections, self-occlusions or l...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Data-Driven Ghosting using Deep Imitation Learning

Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player...

متن کامل

Data-Driven Fuzzy Modeling Using Deep Learning

Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11193239